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Abstract

Workload characterizationis usedfor modelingand evaluating computingsystemsat
different levels of detail. We present workload characterization for a class of
Computational Fluid Dynamics (CFD) applications that solve Partial Differential
Equations(PDEs). This workload characterizationfocuseson three high performance
computingplatforms: SGI Origin2000, IBM SP-2,and a cluster of Intel Pentium Pro
basedPCs.We executeextensivemeasurement-basedexperimentson theseplatformsto
gather statistics of systemresource usage, which lead to a quantitative workload
characterization.Our workloadcharacterizationapproach yieldsa coarse-grain resource
utilization behavior that is being applied for performancemodelingand evaluation of
distributed high performancemetacomputingsystems.In addition, this studyenhances
our understandingof interactionsbetweenPDE solverworkloadsandhigh performance
computing platforms and is useful for tuning applications belonging to this class.
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1 Intr oduction

Many high performancecomputing(HPC)systemsarebeingdevelopedwith commoditymicroprocessors

and network fabrics for improved price/performanceratios. This trend suggeststhat many HPC

architecturesare converging with only differencesin how memory is accessed[14]. While hardware

technologiesadvanceat a rapid pace,software technologiesfor such systemsare lagging behind and

becomingmajor performancebottlenecks[17]. In orderto designsoftwareenvironmentsfor future HPC

systems, it is essential to understand the interactions between system software and hardware resources.

Workloadcharacterizationcanbeconsideredasaneffort to generalizetheresultsof variousmeasurement-

basedstudiesof a classof applicationson a specificsystem.Systemarchitects,softwaredevelopers,and

performanceanalystscanuseworkloadcharacterizationto gleaninsightaboutnew architecturalfeatures,

system managementprotocols, and their impact on performance,respectively. Our objective is to

characterizethe workload for ComputationalFluid Dynamics (CFD) applicationsthat solve partial

differentialequations.Workloadcharacterizationcanbe particularlybeneficialfor modelinganddetailed

evaluation of alternative scheduling and resourcemanagementsystem designs for metacomputing

environments [4,11]. Workload characterizationis also used by computer architects to study the

performanceof a proposedsystemdesignunderrealisticoperatingconditions.Workloadsusedfor such

studiesareoftenbasedon executingactualprograms[21] or tracesof actualprograms[9]. However, this

type of fine-grainedworkload studiesconductedin a bottom-upmanner(i.e., starting from low-level

information)arenot only an overkill but alsoimpracticalfor systemusers,programmers,andanalyststo

plananddesignsoftwarecomponentsthat useor managea computingsystem.Traditionalmeasurement-

basedworkloadstudiesdependoncollectinglargevolumesof accountinglog data,whicharesimpliedand

analyzedusing clustering techniques[7,15]. Therefore, the researchersare consideringhierarchical

workload characterizationmethodologiesto suit the requiredlevel of detail for a particularapplication

[12].

Our workloadcharacterizationaddressesthe issueof level of detail by relying on a priori knowledgeof

system architecture and workload behavior. In particular:
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1. we characterizea workload in termsof its requirementsfor available systemresourcesthat may be
shared among multiple workloads and managed according to well-defined policies and protocols; and

2. we keepthecharacterizationprocessfocusedthrougha top-down approach,which is basedon domain-
specific knowledge about a workload (i.e., a class of applications).

Thesesystemresourcestypically includeCPU,memoryhierarchy, interconnectingnetwork (bus,ethernet,

customnetwork, etc.), and I/O devices.Theseresourcesmay be sharedamongmultiple workloadsand

managedaccordingto well-definedpolicies and protocols.A workload usesthe systemresourcesby

occupying andreleasingthemaccordingits characterizationandresourcemanagementpoliciesimposedby

the system.Conventional bottom-up workload studiesrely on detailed accountinginformation about

systemresourceusageover an extendedperiod of time. Suchstudiesare accomplishedon the cost of

instrumentingthe systemsoftware and applications,collecting and maintaininglarge volumesof data,

performanceoverheadto theapplications,andenormousamountof time andeffort to analyzethesedata.

Usinga top-down characterizationapproach,weneedto measureonly asubsetof theentireresourceusage

accounting information to capture the level of detail that is necessary for a specific performance study.

We focuson threeHPC platforms:SGI Origin2000with MIPS R10000nodes;IBM SP-2with RS/6000

nodes;andaclusterof PCswith Intel PentiumPronodes.WeusetheNAS parallelbenchmark(NPB)suite

as representative CFD solvers for this characterizationeffort [2]. Although thesebenchmarksare not

completeCFD applications,they representgenericimplementationsof partialdifferential(Navier-Stokes)

equation(PDE) solversthat canbe found in mostreal CFD applications.Sincethesesolversaccountfor

themajorcomputationalportionof workload,it is appropriateto usethemto characterizethe interactions

between these solvers and two main system resources that they stress: CPU and memory subsystem.

Section2 of this paperpresentsan overview of CFD applicationsbasedon PDE solution and their

distinguishingqualitativecharacteristics.Wepresentanoutlineof ourworkloadcharacterizationschemein

Section3. Section4 detailsmeasurement-basedworkloadcharacterizationon threeplatformsof interest.

Finally, Section5 presentstwo scenarioswhere we are applying this workload characterization.We

conclude in Section 6 with a discussion of contributions and future directions of this research.
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2 Background

A CFD applicationis a specialcaseof a scientific application,distinguisheddue to its large memory

requirements.It is a well-known fact that CFD applicationsstressthe systemmemory in generaland

cachesin particular. Figure 1 presentsan overview of numericalsolution for typical CFD problems.

Numericalsolutionof partialdifferentialequationsthatrepresentthedynamicsof aphysicalsystemresults

in the computational workload that we intend to characterize in this paper.

NumericalPDEsolversfor CFD applicationsexhibit somedistinguishingcharacteristicsthatarecommon

among them. Some of these computational characteristics are noted in the following:

1. Temporal Recurrence: Usually a small kernel (i.e., solution algorithm) dominatesthe computation.
Execution of this code is repeated over temporal or spatial locations of the problem domain.

2. Memory Bound: Mostnumericalsolutiontechniquesusedin CFDapplicationsemploy sparsematrices
to representsystemparametersobtainedfrom thedifferentialequations.Therefore,datastructuresusu-
ally storenon-zeroelementsof theoriginalmatricesto reducememoryusage.This impliesthatthedata
structures are full but each element is accessed several times during main solution process.

3. Compute Intensive: Typically, CFD solversrequiremoreCPUcyclesthancommunicationbandwidth.
Compute intensive work is dominated by memory loads/stores and floating point operations.

4. Structur edMatrices: Many CFDapplicationsarebasedonalgorithmsthatoperateonstructuredmatri-
ces. This results in repetitive and uniform memory accesses.

For cache-basedHPC systems,the memoryboundperformanceis the most importantcharacteristic.In

orderto understandthe effectsof temporalrecurrenceandregular accesspatternson cacheperformance,

we executeda testcodefragment(seeFigure2). We are interestedin determiningthe numberof cache

misses over each time step as well as cache misses corresponding to accesses to each element of arrayA.

A system
or a process

Mathematical model of the
system or process
using differential equations

Physical
characteristics A system of

equations

A “grid” to represent multidimensional

problem domain (in time & space)

Discretization of problem

domain (usually, space & time)
Numerical algorithm

to solve system of
equations at each
grid point

Analysis of the system
or process

Solution

Domain-specific knowledge
about system or process

Figure 1. Overview of numerical solution of a typical CFD problem on a computer.
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We executedthe examplecodeof Figure2 on oneprocessoron an Origin2000.EachOrigin2000node

consistsof two processors,eachwith two levelsof caches:a64K primarycache(32K for dataand32K for

instructions)anda 4MB secondarycache.In this example,we deliberatelychosea matrix sizethatcould

not fit in theprimarydatacache.Additionally, thenumberof time stepswaskept large,sothat the“cold”

cachemissesin thebeginningdonotsignificantlyskew theoverall results.Weusedioctl basedinterfaceto

accessR10000performancecountersand configuredthem to measureprimary datacachemisses[27].

Figure3 shows thedistribution of primarydatacachemissesover time stepsaswell asindices(calculated

asI*128+J). This experimentsuggeststhat recurrentandregular accessesto large arraysareexpectedto

resultin uniformly distributedcachemissesover timeandaddressspace.Therefore,performanceof typical

CFD applicationsbasedon PDE solvers that run on cache-basedsystemsis likely to be limited by the

cache performance and utilization.

REAL A(1024, 1024)
INTEGER TEMP, TIME, I, J
REAL TEMP

DO TIME = 1:100
DO I = 1:128
DO J = 1:128
TEMP = A(I,J)
ENDDO
ENDDO
ENDDO

Figure 2. Example code.
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For a measurement-basedcharacterizationof a classof CFD applicationsthat solve PDEs,we selected

following NAS parallelbenchmarks:BT, SP, LU, FT, CG,andMG. Thesebenchmarksrepresentdifferent

typesof PDEsolversthatarecommonlyusedin realCFDapplications.Thesebenchmarksareexecutedon

Origin2000,SP-2,anda clusterof PCs,which belongto threeclassesof HPCarchitectures:DSM system,

distributedmemoryparallelsystems,anddistributedsystems,respectively. Sinceexplicit message-passing

is the only common remote memory accessapproachamong these systems,we use MPI-based

implementation of NPBs for this workload study.

3 A Schema for Workload Characterization

In termsof resourceusage,CFD workloadsof interestto this studyaretypically compute-intensive PDE

solvers.An applicationrunningon multiple processorsneedsinter-processcommunication,eitherthrough

explicit message-passingor sharedmemory. Since this workload study focuseson explicit message-

passingbasedapplications,overall workloadcanbe consideredasalternatingbetweencomputationand

communicationstates,asshown in Figure4. This representsthe highestlevel of workloadbehavior that

can be usedto describedifferent typesof scientific applicationsin a genericmanner. Thereare three

temporalcomponentsof this characterizationthat will be of interestfor measurement-basedstudiesin

Section4: (1) inter-arrival time betweensuccessive communicationphases;(2) lengthof a computation

phase;and(3) lengthof a communicationphase.Sincethesequantitiesarenon-deterministic,we will be

interested in finding an appropriate probability distribution to specify them.

In orderto extendthehigh-level workloadcharacterizationschemeof Figure4, we considerfurtherdetails

of the computationphases.In caseof a PDE solver for a CFD application,computationis dominatedby

floating point operationsas well as memoryaccesses(primarily, memoryloads).Figure 5 representsa

more detailedmodel of a typical workload statesrunning undera Unix-like operatingsystemand four

P C P C P
P—Computation
C—Communication

Execution time

Figure 4. Alternating computation and communication phases in a typical CFD solver workload.
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systemresources:CPU,memoryhierarchy, I/O, andnetwork. The dashedlines help correlatethis model

with theoverall characterizationof Figure4. CPUandmemoryaccessstatescorrespondto a computation

phase.Assumingno synchronizationoverhead,a communicationphaserequirestwo resources:CPU to

make thesystemcall for invokingacommunicationserviceandnetwork resourcesfor actualdatatransfer.

CFD applicationsof interest to this study are basedon PDE solvers, which typically do not involve

intensive I/O operations.Therefore,we caneliminatethe I/O statefrom our modelandfurtherexpandon

the memoryaccessstateto appropriatelycapturethe resourceusagebehavior on a cache-basedsystem.

Thesechangesare reflectedin Figure 6. For sharedmemory multiprocessors,the network accesses

correspondto theaccessesto remotememorylocations.Sincewearefocusingonexplicit message-passing

evenof shared-memorysystems,remotememoryaccessesarenot consideredasa partof load/storestate.

For programsthat benefit from global addressspaceon shared-memorysystems,we could further

eliminate a separate network access state and add it as another state under memory access.

Workload model can be parameterizedfor a specific system based on actual measurements.

Parameterizationinvolves:(1) determininga suitableprobability densityfunctions(pdfs) to representthe

lengthsof computationandcommunicationstates;(2) fitting asuitablepdf to representinter-arrival timeof

successive communicationstates;(3) rangesof transitionprobabilitiesto eachstatewithin memoryaccess

state(e.g., primary cachemiss rate); and (4) fraction of load/storeinstructionsamongall instructions

executed.

CPU

NetworkMemory

I/O

Figure 5. Possible states of a typical workload running under a Unix-lik e operating system.
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Using this schemeof workloadcharacterizationandparameterizationon particularHPCsystems,we can

modelandevaluatetheperformanceof aparallelor distributedcomputingsystemunderdifferentoperating

conditions.Eachnodesof the systemmay executeoneor moreprocessesthat sharethe local resources:

CPU, memory hierarchy, and network, accordingto the managementpolicies enforcedby operating

system.Executionof an applicationprocesscanbe modeledby alternaterequestsfor CPU andnetwork

time as illustratedby the processbehavior given in Figure7. The numberof memoryaccessesandcost

incurreddueto cachemissesis consideredasa part of the computationphasetime. Clearly, this level of

detaildoesnotcapturemany architecturaldetailsandmaynotbesuitablefor designinganew architectural

feature in a microprocessor. However, this level of detail is sufficient for analyzing system level

performanceevaluationof a concurrentsystem.This level of detail is a compromisebetweenaccuracy of

performanceevaluationandamountof effort neededto usea detailedworkloadthat capturesinstruction

level behavior of a process and system resources.

In section 5, we follow the workload characterizationschemapresentedin this section to design

measurement-basedexperimentson threeplatformsof interest.Measurementsyield quantitative rangesof

workload parameters that are useful for modeling-based evaluation.

Load/store

L1 cache

L2 cache

TLB access

Local memory

Memory operation

access

access

access
L1 hit

L1 miss

L2 hit

L2 miss

TLB hit TLB miss

Local memory hit

Figure 6. Detailed workload characterization scheme.
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4 Measurement-Based Experiments

Measurement-basedworkloadcharacterizationby gatheringa similar setof performancestatisticsacross

heterogeneousplatforms requires formidable effort due to differences in architecture, operating

environments,and available monitoring tools. Three systemsof interest to this study are basedon

following processorsoneachnode:MIPSR10000,IBM RS/6000,andIntel PentiumPro.Theseprocessors

share two common architectural features that are important to note:

1. they support special on-chip counters to collect statistics related to processor operations; and

2. memory performance relies on the utilization of one or two levels of cache.

Thesefeaturescanbeidentifiedon many otherstate-of-the-artprocessors.Our workloadstudyrecognizes

thesecommonfeaturesby utilizing themfor collectingperformancemeasurements,in particularaboutthe

memory performance.

In orderto provide a comparative measureof performanceof threeplatforms,we considerthe execution

timesof anMPI-basedimplementationof NPBson thesesystems.Table1 lists theexecutiontimesof each

class A NPB on three platforms. Theseexecution times reflect the wall-clock times excluding the

initialization andfinal printing of resultphasesascodedin NAS implementationof thesebenchmarks[2].

Clearly, Origin2000andSP-2exhibit superiorperformancecomparedto the clusterof PCsdue to their

1. Set current_state = COMPUTATION
2. Set next_communication_time = interArrivalTimeDist.draw()
3. Set current_computation_length = next_communication_time - current_time
4. Determine the number of memory accesses using the total number of floating

point operations for this program and determining the proportional number
of floating point operations during current computation phase, assuming
that all floating point operations are uniformly distributed during
execution

5. Occupy the CPU for current_computation_length time and calculate the
number of accesses to caches and memory according to their access and miss
rates during current_computation_length

6. Set current_communication_length = communicationLengthDist.draw()
7. Set current_state = COMMUNICATION
8. Occupy the CPU for current_communication_length time
9. Asynchronously occupy the network resources for a fixed time
10. Repeat from 1 as long as current_time < simulation_end_time

Figure 7. A model for a PDE solver process behavior based on workload characterization.



11

finally tuned and carefully designed parallel architectures.

In the following subsections,we briefly overview the architecturesin addition to presentingworkload

studiescarriedout on theseplatforms.Resultsof a workloadstudy on eachplatform is presentedfrom

three perspectives: overall statisticsrelated to NPB executions;memory subsystemperformance;and

characterization of temporal resource usage behavior.

4.1  Origin2000

SGI Origin2000 is a Distributed SharedMemory (DSM) systemwith a cachecoherentNon Uniform

Memory Access(ccNUMA) architecture[20]. Eachnodeof the systemconsistsof two MIPS R10000

processorswith two levels of separatedataandinstructioncachesfor eachprocessor;and4GB of main

memorysharedbetweentwo processorson a node.Multiple systemnodesareconnectedin a hypercube

topology through a high speednetwork. This systemrepresentsan important classof shared-memory

platforms that are becoming popular in high performancecomputing becausethey offer ease of

programming due to a global address space and scalability to large number of nodes.

Native SGI tools, such as Perfex and SpeedShop,benefit from the on-chip performancecountersof

R10000processorsfor low-overheadandreliablemeasurementsof processoroperations[27]. Weusethese

tools in addition to a custom tracing library to collect runtime information necessaryfor workload

characterization.Statisticsprovided in the following subsectionsare collectedduring the executionof

entireprogram,including initialization andfinal printing of resultsphases.Theseexperimentsdiffer from

thosewhoseresultsare reportedin Table1, which werebasedon the executiontime of the benchmark

portion of the code.

Table 1.  Comparison of class A NPBs’ execution times on three platforms using four nodes.

Platform
Processoron

each node
Processor

speed(MHz)

Benchmark execution time (sec)

BT SP LU FT CG MG

Origin2000 R10000 195 MHz 820.34 392.92 364.90 45.87 13.21 16.90

SP-2 POWER2 66 MHz 593.61 472.72 478.73 66.73 10.77 16.30

Cluster of PCs Pentium Pro 200 MHz 1,769 1,415 1,090 480.77 46.61 55.16
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4.1.1  Overall Statistics

Table2 providestheoverall statisticsof computationandcommunicationphasesobtainedthroughtracing

of classA NPBs.We insertedinstrumentationat theboundariesof communicationphasesof eachprogram

to obtainthetemporalcharacteristicsfrom eachof thefour nodeswherebenchmarkprocessesexecute.On-

chip cycle counterof R10000processorswereusedto determinethetimestamps.Resultsarebasedon the

tracesobtainedfrom oneof thefour nodes;they aresimilar to thetracesobtainedfrom othernodes.Mean

inter-arrival time betweencommunicationphasesis small except in the caseof FT benchmarkthat

performssmall numberof global communicationoperations.Communicationoperationsare scattered

throughoutthe execution for other benchmarks.Origin2000usesSGI’s implantationof MPI message-

passing library that benefits from the shared-memory architecture of this platform.

4.1.2  Memory Performance

Memory performanceplays a key role in obtaininghigh performancefor an applicationexecutedon a

DSM systemlikeOrigin2000.Therearefour levelsof memoryhierarchy: primarycache,secondarycache,

localmemorysharedbetweentwo R10000processorsonanode,andmemorylocatedonanon-localnode.

A datahit in primarycachetakesonly oneclockcycle;ahit in secondarycachetakes10cycles;ahit in the

local memoryconsumes100cycles;anda hit in a non-localmemorywasteswell above 150CPU cycles

[20]. Thustheperformanceof a memoryboundworkloadsuchasa PDEsolver for a CFD applicationwill

suffer when program code does not fully utilize the caches.

Table 2.  Statistics of communication and computation phases of NPBs (class A) on Origin2000
obtained through custom instrumentation.

Benchmarks
Inter -arri val time of

communication phases
Length of

communication phases
Length of computation

phases

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

BT 0.21 0.024 1.53 0.02 0.014 0.49 0.19 0.009 1.53

SP 0.05 0.029 0.80 0.004 0.014 0.12 0.04 0.014 0.79

LU 0.006 0.028 0.61 0.0004 0.018 0.17 0.005 0.008 0.59

FT 3.19 1.50 5.55 0.49 0.10 1.14 2.69 0.90 5.55

CG 0.009 0.37 0.70 0.001 0.02 0.04 0.008 0.12 0.70

MG 0.01 0.01 1.62 0.001 0.003 0.09 0.01 0.01 1.62
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Table3 lists theratiosof memoryaccessoperationsto all of thefloatingpoint operations.Thesestatistics

areobtainedby executingeachbenchmarkthroughPerfex onall four nodes.Perfex multiplexesthetwo on-

chipcountersof R10000to measurements31differentCPUandmemoryrelatedmetricsusingasampling-

basedapproach.To accountfor softwaremultiplexing of hardwarecountersandsampling,the resulting

statisticsare approximatedthrough the counts.Theseapproximationsdo not significantly affect the

accuracy of measurementsfor sufficiently long-runningprograms.Basedon thesemeasurements,we can

observe that almost every floating point instruction in thesebenchmarksrequire at least one memory

access.This observation is consistentwith commonbelief that CFD solvers are often memorybound

applications[2]. Thesemeasurementsalso indicate that more than 80% of execution time is spentin

accessingmemorywhereexecution time is monitoredfor the entire program.Thesememoryaccesses

includefloatingpoint aswell asinteger instructions.Thesepercentagesarecalculatedby Perfex basedon

the total costsof cacheand memory accessesand execution time. This information is important for

performancetuning scenarioswherewe have to isolatethe bottleneckresource.In caseof a CFD solver

application,the bottleneckresourceis almostalways memory. Numberof floating point operationsper

secondon eachnoderepresentsa measureof computation-intensityof theworkloadon a givensystem.A

larger value indicatesthat the applicationis computationintensive and likely to be memory-andCPU-

bound.

Table 4 presentsthe cacheand TLB miss statisticswith the cost of thesemissesfor eachof the NPBs

executedonOrigin2000.Themissratesareexpressedasaratioof cacheor TLB missesto thetotalnumber

Table 3.  Memory performance statistics of NPBs on Origin2000 obtained by using Perfex tool.

Benchmarks
Execution
time (sec)

MFLOPS
per node

%age of memory access
time to execution time

Ratio of memory access
operations to floating

point operations

BT 794.22 33.87 0.83 1.33

SP 385.86 35.07 0.96 1.38

LU 353.63 59.96 0.91 0.93

FT 51.98 30.61 1.00 1.58

CG 13.81 15.91 1.00 3.58

MG 25.05 46.01 1.00 1.31
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of memoryreferences.Total numberof memoryreferencesarevery closeto thenumberof floatingpoint

instructionsfor this workload,assuggestedby thestatisticsof Table3. Costsof cacheor TLB missesare

determinedaspercentagesof time to replacecacheline or TLB entriesto the entireexecutiontime of a

program.For mostof thesecases,cachemissesaccountfor about60%of theexecutiontime.TLB misses

aresmall due to the distribution of dataamongprocessorsin a message-passingparadigm,which hasa

side-effect of reducing the effective size of data for eachprocessor. Non-local memory accessesare

throughexplicit messagepassingandits costis consideredasa part of communicationcostaccordingto

workload characterization scheme presented in Section 3.

4.1.3  Characterization of Temporal Process Behavior

Averageresourceusagestatisticscanonly presenta summaryof processbehavior andarenot useful for

modelingandevaluationscenariosthatevolveover time.Probabilitydistributionscanadequatelyrepresent

the temporalbehavior of a processunderstudy. A detailedsimulation-basedstudy can useappropriate

probabilitydistribution function(pdf) to modeltherequirementsof computationresourcesover time from

an application process.In this subsectionwe determine appropriatepdfs to representalternating

computationand communicationphasesfor our referencePDE solver workload. For this purpose,we

insertinstrumentationin NPBsat theboundariesof eachcomputationandcommunicationphase.Analysis

of eachtracefile yields a numberof samplesof threemetrics:(1) inter-arrival time of communication

phases, (2) length of communication phase, and (3) length of computation phase metrics.

Table 4.  Cache and TLB misses for NPBs on Origin2000 with 195 MHz R10000 processors
obtained through Perfex.

Benchmarks

L1 data cache L2 data cache TLB

Miss rate
(%) Cost (%)

Miss rate
(%) Cost (%)

Miss rate
(%) Cost (%)

BT 11.9 21.81 21.50 39.28 0.10 9.09

SP 14.72 32.66 13.56 37.11 0.17 2.08

LU 14.03 36.10 6.39 19.34 0.35 7.35

FT 24.11 56.60 4.13 19.60 0.03 0.35

CG 26.63 69.03 5.78 33.45 0.13 0.75

MG 13.37 38.23 11.22 35.94 0.02 0.37
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Figure8 presentshistogramsof samplesof threemetricsof interestcollectedduring theexecutionof BT

andSPbenchmarks.Thesehistogramsareplottedsuchthat theareaundereachhistogramis equalto one.

We canthencomparethe relative frequenciesof measuredvaluesof the metricsto four theoreticalpdfs:

weibul, normal,lognormal,andexponential.We usedstatisticstoolboxof Matlab to determinethevalues

of thesepdfsfor eachvalueof thethreemetrics.For eachof thehistogram,it canbeobservedthatmostof

theoccurrencesareclusteredaroundsmallermetricvalues.This indicatesthatanexponentialdistribution

is appropriateto representthesemetrics. A closer examinationof histogramsof Figure 8(a) and (b)

indicatesacomparatively largerpeakfor thesmallestbin, which is closelytrackedby thetheoreticalvalues

of lognormalpdf. However, an exponentialdistribution is an appropriatechoiceto representinter-arrival

timesbecauseit fits a rangeof small inter-arrival times in addition to approximatelyaccountingfor the

initial peak. Additionally, computationand communicationphasesrepresenta fairly coarse-grained

classificationof thebehavior of anapplicationprocess.Therefore,useof exponentialdistribution ensures

that the lengthsof successive communicationor computationphasesarerelatively independentdueto the

“forgetfulness”propertyof anexponentiallydistributedstochasticprocess[24].Otherresearchefforts have

also used exponential distribution when workload is classified as alternating computation and

communication processes [19].

Figure9 representsthe plots of normalizedhistogramsandtheoreticalpdfs for four kernelbenchmarks:

LU, FT, CG,andMG. Exceptfor FT, all otherbenchmarksexhibit a relatively largenumberof occurrences

of small metric values,which is a behavior appropriatelyrepresentedby an exponentialdistribution. In

caseof FT, thereis a total of 17 communicationphasesduringtheentirebenchmarkexecution.Therefore,

the timesfor communicationandcomputationarespreadout to a wider rangeof values.In caseswherea

large numberof samplesare not available to fit a theoreticalpdf, a normal distribution is considereda

“robust” choice.However, we treat the temporalbehavior of FT as a specialcasebecausea real CFD

application typically runs for a long time and will have many more alternating computationand

communicationphases,which arelikely to follow theexponentialdistribution asexhibitedby all theother

benchmarks in NAS suite.
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From the measurement-based workload study on Origin2000, we conclude that:

1. PDEsolversexhibit alternatingcomputationandcommunicationphasesover time,which canberepre-
sented by exponential distribution;

2. number of floating point operations per second per node range from 13 MFLOPS to 60 MFLOPS;

3. close to 80% of computation time is accounted for memory accesses;

4. primary level cachemissratefalls in the rangeof 11%to 27%with a costof 10 CPUcyclesfor each
miss;

5. secondarylevel cachemissratelies in therangeof 4% to 22%with a costof 100CPUcyclesfor each
miss; and

6. TLB misses are insignificant for a message-passing program due to fine-grained data distribution.

Thesequantitative resultscanbe usedto parameterizea simulationmodelof an applicationprocessthat

executed on an Origin2000.
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Figure 8. Histograms and pdfs for (a) BT and (b) SP benchmarks executed on four processors of an
Origin2000.
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Figure 9. Histograms and pdfs for (a) LU, (b) FT, (c) CG, and (d) MG benchmarks executed on four
processors of an Origin2000.
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4.2  SP-2

An IBM SP-2is composedof RS/6000-590workstations(alsoknown as,widenodes)connectedthrougha

highspeedswitchto work asadistributedmemorymulticomputersystem.EachRS/6000nodeis basedon

aPOWER2multi-chipprocessorwith 66.7MHz clock,256KBytesof datacache,two integercomputation

units,andtwo floating point computationunits.Eachcacheline is 256 byteswide. A key featureof RS/

6000 wide nodeis that the main memoryto cachebandwidthis sameas POWER2 cacheto processor

bandwidth,which is equalto four 64-bitswordsperclock cycle.This featureallows a nodeto run closeto

peak(250MFLOPS)performancerate.Nodesareconnectedby anomeganetwork, which is ahierarchy of

cross-barswitches.This switchcantransferdatabetweenSP-2nodesata latency of 1 microsecondand40

MBytes/sec bidirectional bandwidth. Considering software overhead, the latency becomes 45

microsecondsandbandwidthabout34 MBytes/second.Messagesaretransferredusingbufferedwormhole

routing.

Like MIPS R10000,POWER2 architectureof an RS/6000node also supportshardware countersto

measureseveral processoractivities, suchas numberof cachemisses,TLB misses,and floating point

instructions. We use an independentlydeveloped data collection tool for SP-2, called Hardware

PerformanceMonitor (HPM) to gather the above statistics.Additionally, we use our instrumentation

library to collect tracedatafrom NPBsexecutedon SP-2usinga native implementationof MPI message-

passinglibrary. The HPM doesnot directly provide the numberof total memory accessesduring an

execution.Therefore,we calculatethis valuein anindirect(anapproximate)fashion.We shallassumethat

thenumberof memoryaccessesareat leastequalto thenumberof floatingpoint operations.This fact is

substantiatedby thestatisticsreportedfor anOrigin2000nodein Table3. In otherwords,we areassuming

thattheratio of memoryaccessesto thenumberof floatingpoint operationsis anarchitectureindependent

characteristicof a programandholds for otherprocessorsof interestto this studyfor identicalprogram

inputsandcode.Werecognizetheapproximatenatureof thisassumptionbut wehaveto useit to determine

cache and TLB miss rates and compare in the absence of total number of memory access count.
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4.2.1  Overall Statistics

Table5 providestheoverall statisticsof computationandcommunicationphasesobtainedthroughtracing

of NPBs.Unlike instrumentationfor Origin2000executions,timestampsareobtainedthroughMPI timing

function. This requireda changein our custominstrumentationlibrary for executionon SP-2while the

instrumentedcode is samethat was used on Origin2000. Therefore,the number of tracesfor each

benchmarkarealsothesame.Thesetiming statisticsreflecttheexecutionof entireprogramsincludingthe

initial setupand final printing of resultsphasesin addition to the execution of code that is usedas

benchmark.A comparisonwith the samestatisticsobtainedby executingNPBson Origin2000that were

reported in Table 2 indicates the consistency of two results.

4.2.2  Memory Performance

Memorysubsystemof anodeof distributed-memoryparallelsystemis notascomplicatedasthatof anode

on a DSM systembecausecachecoherenceproblemdoesnot occur. An RS/6000supportsa simpleand

efficient local memoryhierarchy anda fastnetwork to improve remotememoryaccessesthroughexplicit

message-passing.Thecostof a cachemissfor a 66 MHz POWER2is at least8 cyclesandthatof a TLB

missis at least28cycles.Thesummarizedresultsof HPM provide theoverallexecutiontime,totalnumber

of floating point operations, and number of cache and TLB misses.

Table6 presentsthe cacheandTLB missstatisticsfor the NPBsexecutedon SP-2.Thesestatisticsare

obtainedby startingHPM just beforeprogramexecutionandstoppingit immediatelyafter the execution

Table5. Statisticsof communicationand computation phasesof NPBson SP-2obtainedby custom
instrumentation.

Benchmarks
Inter -arri val time of

communication phases
Length of

communication phases
Length of computation

phases

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

BT 0.15 0.05 3.69 0.004 0.028 0.07 0.15 0.022 3.69

SP 0.06 0.12 1.15 0.003 0.03 0.07 0.06 0.04 1.08

LU 0.01 0.06 1.42 0.0003 0.04 0.09 0.01 0.02 1.36

FT 4.35 0.45 15.79 1.23 0.18 12.54 3.12 0.20 14.64

CG 0.01 0.42 1.97 0.002 0.09 0.004 0.01 0.17 1.97

MG 0.04 0.05 42.81 0.01 0.02 6.69 0.03 0.02 42.81
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finishes.At thatpoint,asummaryof CPUandmemoryrelatedstatisticsareobtainedfrom HPM. Costsfor

datacacheandTLB missesis calculateddirectly from the summarystatisticsby using8 cyclesand28

cyclescostsfor cacheandTLB misses,respectively. However, cacheandTLB missratesarecalculated

basedon theassumptionthatthenumberof memoryaccessesis equalto thetotal numberof floatingpoint

operations.

A comparisonof cachemisscostsfor anSP-2nodewith thatof anOrigin2000node(seeTable4) indicates

thatanSP-2nodeexhibitssuperiorcacheperformance.Themaximumcachemisscostis neverhigherthan

12% of total execution time for an SP-2 node comparedto a maximum of about 60% cost for an

Origin2000node.POWER2 and R10000cachearchitecturehave major differences.POWER2 supports

256KBytescachewith 256 byteswide cachelines. An R10000supports32 KBytes primary datacache

with 128 byteswide cachelines and a secondarycacheof 4 MBytes with 256 byteswide cachelines.

Apparently, thelargercacheandblocksizesof SP-2nodesarefavorablefor thememoryboundCFDsolver

workloads.Origin2000 nodessupport smaller block size for primary cachereducethe false sharing

problemdueto globallysharedaddressspace.In addition,R10000processorhasa raw speedof 195MHz,

which makesthecostof a primarycachemisseffectively lesserthanthecostof cachemissof a POWER2

processor. Consequently, asshown in Table1, theexecutiontimesof NPBson two platformsdo not show

any consistent differences except for BT.

Table 6.  Cache and TLB misses for NPBs on SP-2 with 66 MHz POWER2-based RS/6000 nodes
obtained through HPM.

Benchmarks
MFLOPS
per node

Data cache TLB

Miss rate
(%) Cost (%)

Miss rate
(%) Cost (%)

BT 64.75 1.48 11.60 0.10 2.62

SP 42.10 1.97 10.05 0.27 4.81

LU 59.88 0.95 6.92 0.0002 0.56

FT 39.08 1.05 4.99 0.08 1.27

CG 21.42 2.78 7.23 0.20 1.81

MG 7.02 2.97 2.52 0.12 0.35
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4.2.3  Characterization of Temporal Process Behavior

Figure10presentshistogramsof threemetricsof interestfor BT andSPbenchmarksbasedonexecutionon

four SP-2nodes.Samplesof thesemetricsare basedon tracesobtainedfrom eachnode.There is no

differencein theoverall shapeof thesehistogramscomparedto thoseobtainedby executiononOrigin2000

(seeFigure8). Largestnumberof inter-arrival timesof communicationphases,lengthsof communication

phases,andlengthsof computationphasesaresmall.Thusanexponentialpdf canappropriatelyrepresent

thesetemporalcharacteristicsin thiscasealso.Theobviousdifferenceis theparametersfor theexponential

pdfsbecausemean(andminimumandmaximum)valuesfor the threemetricsdiffer from thoseobtained

from Origin2000 execution.

Figure11representsthehistogramsandpdfsfor four kernelbenchmarksobtainedby executiononfour SP-

2 nodes.Mostof theoccurrencesof themetricsareclusteredaroundsmallvaluesexceptfor FT dueto very
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Figure 10. Histograms and pdfs for (a) BT and (b) SP benchmarks executed on four nodes of SP-2.
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small numberof communicationphases.Thesetemporalcharacteristicsareagain comparablewith those

obtainedfrom Origin2000 execution with differencesin parameters.Thesedifferencesare due to the

architecture as well as communication subsystems of two platforms.

As in caseof Origin2000,we quantitatively summarizetheresultsof workloadstudyon SP-2asfollowing

observations:

1. CFD applicationsbasedon PDE solvers exhibit alternatingcomputationand communicationphases
over time, which canbe representedby exponentialdistribution with appropriateparametersfor each
metric;

2. number of floating point operations per second per node range from 7 MFLOPS to 65 MFLOPS;

3. cache miss rate falls in the range of 1% to 3% with a cost of 8 CPU cycles for each miss;

4. TLB misses and their costs are again insignificant.

Cache performanceof an SP-2 node is superior from that on Origin2000 as POWER2 processor

considerablyreducesthe numberof missesdue to cachecapacity. For a long-runningCFD application,

reducednumberof cachemissescanmake a significantdifferencein its performance.This is oneof the

reasons of including memory performance as a part of our workload characterization effort.

4.3  Cluster of PCs

In recentyear, the performanceof personalcomputers(PCs)hascaughtup with the high-endgraphical

workstations.Due to economy-of-scale,PCsbasedon state-of-the-artCISCprocessorscanhave superior

price-performanceratio comparedto many workstations.This is one of the primary reasonsfor their

popularity in a traditional Unix-based workstation market. As clusters of high-end workstation

architectureswereenvisionedto provide performancecomparableto supercomputersat fraction of price,

clusters of high-end PCs can further reduce the cost of such a system.

In this subsection,we presentmeasurement-basedworkloadstudyon our in-houseclusterof PCsusing

NPBs.This prototypesystemconsistsof 30 Intel PentiumPro nodesrunningLinux andinter-connected

througha Myrinet aswell asa fastEthernetnetworks.Theraw speedof eachprocessoris 200MHz with

two levelsof cache.Thefirst level is 8 KBytesandsecondlevel is 512KBytes.Eachnodehas128MBytes

of mainmemory. Messagepassingis providedby MPICH implementationof MPI library. WeusePortland
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Figure 11. Histograms and pdfs for (a) LU, (b) FT, (c) CG, and (d) MG benchmarks executed on four
nodes of SP-2.
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Group’s Fortran77 compiler for Linux to compile and link the NPBs.

4.3.1  Overall Statistics

Table7 providestheoverall statisticsof computationandcommunicationphasesobtainedthroughtracing

of NPBs.The instrumentationlibrary as well as the instrumentedcodeis samethat was usedon SP-2.

Therefore,thetimestampsof eventsof interestareagainobtainedby MPI functions.Thesetiming statistics

reflect the executionof entireprogramsincluding the initial setupandfinal printing of resultsphasesin

additionto theexecutionof codethatis usedasbenchmark.A comparisonof thesimilar statisticsobtained

from Orgin2000and SP-2nodesindicatesthat lengthsof samecommunicationphasesgenerallytakes

longer on PCs. Software overheadfor communicationis always a limiting factor for communication

performanceof a distributed computingsystem.The problemaggrevateswhen the systemis developed

based on unoptimized network interface layers of a non-commercial and unsupported operating system.

4.3.2  Memory Performance

PentiumPro alsoprovideson-chiphardwarecountersto collect processor-level measurements.We usea

publicly availabletool, calledperfmon, to obtainthesemeasurements.At thetimeof writing thispaper, we

are installing a Linux patch to allow perfmon to monitor the CPU and memory statisticsfrom each

PentimumPro processorof selectednodes.We expectthat the testingof this monitoringtool will take a

few moreweeksbeforewecanobtainreliableresourceusageinformationfrom this tool. Weshallmeasure

the MFLOPS rations, L1 and L2 cache misses and their costs for each NPB at that time.

Table 7.  Statistics of communication and computation phases of NPBs on a cluster of PCs.

Benchmarks
Inter -arri val time of

communication phases
Length of

communication phases
Length of computation

phases

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

Mean
(sec)

Min
(msec)

Max
(sec)

BT 0.44 0.08 4.96 0.03 0.03 0.17 0.42 0.05 4.94

SP 0.18 0.19 1.68 0.03 0.03 0.22 0.15 0.06 1.65

LU 0.02 0.21 1.38 0.001 0.04 0.25 0.02 0.08 1.28

FT 38.72 30.9 165.18 14.45 0.40 61.56 24.27 0.50 165.17

CG 0.04 0.59 16.06 0.01 0.17 0.08 0.03 0.33 16.06

MG 0.18 0.08 160.25 0.004 0.02 0.07 0.17 0.05 160.20
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4.3.3  Characterization of Process Behavior

Figure12presentshistogramsof threetemporalmetricsfor BT andSPbenchmarksexecutedonfour nodes

of PC cluster. Thesecharacteristicsmatchapproximatelyto thoseof Origin2000and SP-2executions.

Largestnumberof occurrencesarecloseto thesmall valuesof themetricswith a largerspreadof values

comparedto Origin2000andSP-2observations.Additionally, lengthsof communicationphasesarelarger

for thesecases.Suchcommunicationcharacteristicsareexpecteddueto largeroverheadsof anoperating

system that is not particularly tuned for any specific parallel or distributed system.

Figure13representsthehistogramsandpdfsof temporalmetricsfor four kernelbenchmarks:LU, FT, CG,

andMG. Theseresultsareconsistentwith the temporalcharacteristicsof BT andSP. Histogramsof three

metricsclosely follow the exponentialdistribution. Again, the lengthsof time spentin communication

phases are significantly larger compared to those on Origin2000 and SP-2 executions.
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Figure12.Histogramsand pdfs for (a) BT and (b) SPbenchmarksexecutedon four nodesof a cluster
of Pentium Pro based PCs.
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Figure 13. Histograms and pdfs for (a) LU, (b) FT, (c) CG, and (d) MG benchmarks executed on four
nodes of a cluster of Pentium Pro PCs.
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Temporal characteristics of NPBs are quantitatively summarize as following observations:

1. CFD solversexhibit alternatingcomputationandcommunicationphasesover time,which canberepre-
sented by exponential distribution with appropriate parameters for each metric; and

2. communication latencies are significantly higher due to untuned operating system software;

This concludesour study of CFD applicationsbasedon PDE solver workloads on three platforms.

Dependingon the systemarchitecturesandoperatingsystemsoftware,the performanceof memoryand

communicationsystemsshow significantdifferences.In orderto usethis characterizationfor performance

modeling and evaluation, we need to account for these architecture-and operating system-based

differencesto accuratelymodela particularsystem.Coarsegrain temporalcharacteristicsof CFD solver

workloads are identical across these platform with different parameters.

5 Putting Workload Characterization to Work

Workloadcharacterizationof PDEsolver basedCFD applicationis applicableto a numberof performance

evaluation scenariosas detailedin Table 8. Majority of theseperformancestudieshave one common

thread: they emphasizeon the ability to analyzeperformanceat the entire systemlevel rather than

individual applicationsor system componentslevel. We are primarily using CFD solver workload

characterizationto: (1) identify application performancetuning methodologiesbased on resource

utilization profiles;and(2) evaluatetheperformanceof heterogeneousmetacomputingenvironments.We

present a brief overview of these performance studies in the following subsections.

5.1  Performance Tuning

Measurement-basedworkloadstudyof CFD solversprovidedinsight into thesystemresourcebehavior of

theseapplications.Onequalitative resultof analysispresentedin Section4 is thememory-boundbehavior

of theseapplications,which aregenerallycompute-intensive. If theseapplicationsresultin efficient useof

memory subsystem, performance can significantly improve.

In this subsection,we presentour experienceof performancetuningof sequentialimplementationof NAS

benchmarkBT on Origin2000.About97%of theexecutiontime duringthis executionis CPUtime,which

alsoincludesmemoryaccesstime.Additionalmeasurementsrevealthatprimaryandsecondarydatacache
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missesare responsiblefor about 70% of the CPU time during this execution. In order to tune cache

performance,we first identify the sectionsof codethat accountfor largestproportionof executiontime.

Subsequently, we focus on this code and modify it to improve cache utilization.

Figure14(a)shows a profile of primary datacachemisseswith respectto varioussubroutinesof the BT

benchmark.Thegraphrepresentsthenumberof datacachemisseswithin a subroutineasa percentageof

total numberof cachemissesduring theexecution.Most of thedatacachemissesareclusteredin a small

numberof subroutines.It implies that thesepartsof the codehave relatively large numberof memory

accesses compared to others, and are more likely to incur overhead due to cache misses.

We optimizedthememoryaccessesby modifying someloop nestsin compute_rhs subroutine.Figure

14(b)shows theprofileaftertuningonesubroutinethatwasresponsiblefor largestnumberof primarydata

cachemisses.The importantthing to notein Figure14(b) is that the relative memoryaccessoverheadof

themostexpensive subroutinehasconsiderablyreduced.This tuningresultsin about15%improvementin

overall execution time of BT.

Thisprocessof identifyingabottleneckresourceandmodifying thecodeto tunetheusageof thatresource

Table 8. Scenarios of applying CFD solver workload characterization.

Performance
evaluation scenario Explanation

Application
performance tuning
based on resource
utilization profiles

Performance of individual applications on a particular HPC platform are better
understoodwhenwe knowthe characteristicsof a larger classof similar applicationson
that system.Workloadcharacterizationwasdirectlyusefulfor understandingperformance
bottlenecks in general and memory performance bottlenecks in particular.

Cache performance
prediction

We are in the processof designinga cache performanceprediction tool that is basedon
genericworkloadcharacterizationandsystemmodel.Themainobjectiveof this tool is to
allow the user to study cache performance of basic blocks in the code.

Performance studies of
metacomputingsystems

We are using workload characterizationto analyzethe performanceand throughputof
metacomputing systems under different operating conditions.

Effect of heterogeneous
workloads on QoS

Oftenhigh performancecomputingservers are usedto executea diversemix of workloads.
Workload characterization is useful to study QoS of such systems.

Study of job scheduling
policies

Productionhigh performancesystemfor scientificworkload are usually usedin a batch
mode. Workload characterization can be used quantitatively analyze various job
scheduling policies.

Design and evaluation
of virtual shared
memory systems

Workload characterizationcan be usedto fully analyzeand tune virtual shared memory
systems to deliver high performance when actually implemented.

Design of data
collection systems

Monitoring systemscan be designedto havelow overheadto the systemand application
usingworkloadcharacterizationsthat representinteractionsamongsoftwareandhardware
resources of a system.
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can be appliedto other applicationsas well. In this scenario,workload characterizationwas helpful to

provide us an a priori knowledge about possiblebottleneckresourcewithout resorting to aggressive

measurements of actual application.

5.2  Modeling and Evaluation of a Metacomputing System

As illustrated by Figure 15, a metacomputingsystemtypically consistsof a set of high performance

computingsites,datacollectioninstruments,andlargedatabasesatgeographicallyseparatesitesconnected

througha high bandwidthand low latency wide-areanetwork. Other termsusedfor describingsucha

distributedsystemincludeInformationPowerGrid, NationalTechnology Grid or ComputationalGrid due

to similaritiesbetweena ubiquitouscomputingenvironmentandanelectricpower grid. Thegoalof such

systemsis to make the computingresourceswidely available to usersregardlessof their geographical

location.In addition,usersshouldbeableto focusontheirapplicationdomainsratherthandealingwith the

subtleties of porting and optimizing their codes to different high performance systems. See

[8,11,18,23,25,26]for detailsabouta numberof projectsaddressingdesignand useof metacomputing

systems.

Metacomputingsystemsare currently at planningand prototypicalstages.Modeling and evaluationof
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Figure 14. Profile of data cache misses for BT (a) before and (b) after cache performance tuning.
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thesesystemsat thisstageis necessaryto ensurethattheproductionsystemswill beableto meetQualityof

Service(QoS)requirementsof specificapplications.AlthoughQoSis s genericproblem,we focuson this

problem in the context of resourcemanagementand scheduling in a heterogeneousenvironment.

Czajkowski etal. identify five resourcemanagementissuesthatarespecificto metacomputingsystems:(1)

site autonomyrequirements;(2) heterogeneouslocal resourceschedulingapproachesand tools; (3)

possibility of managingheterogeneoustypes of workloads; (4) co-allocationof resourcesfor certain

applications;and(5) adaptive controlor resourcesto matchdynamicallyvaryingapplicationrequirements

and resource availability.

Our modeling effort focuses on two objectives: (1) quantitative comparisonof different resource

schedulingandmanagementpolicies;and(2) impactof specificresourceschedulingpolicieson domain-

specificQoSmetric.Figure16 illustratesa queuingnetwork modelto representa metacomputingsystem

with resourcemanagementcomponents.Systemis representedby four typesof resources:computingand

databaseserver resources;distributed instruments;one or more resourcemanagers;and a wide area

network thatconnectsall theresources.Theseresourcesaresharedamongmultiple clientsthatoccupy the

resourcesinteractively or in a batchmode.Componentsof this modellabeledasHPCsystemmodelsare

parametrizedusing workload study presentedin this paperto representthe executionof a CFD solver

Computational
resources at

geographically
distributed
locations

Distributed
databases

Distributed
instruments

Clients
(users of

interactive
multimedia
systems)

Wide area network

Figure 15. A typical metacomputing system.
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workload.For an interactive job, the QoS metricsare latenciesfor a transactionandnumberof missed

deadlines.A smallervalueof bothof thesemetricsis desirable.For a batchjob, theQoSmetric is waiting

time in a batchqueueandmeasuredfloatingpoint operationspersecond.A smallerwaiting time indicates

thatthechoiceof anHPCsystemby resourcemanagerto schedulethejob is basedon its currentload.On

theotherhand,selectionof a systembasedon its loadmaynot resultin high performancemeasuredasa

ratio of usefulfloating point operationsduring the executiontime. A high valueof this ratio is desirable.

An optimalchoiceof a computingresourcecouldbea compromisebetweenwaiting time andnumberof

floating point operations achieved on that system.

Ourmodelingbasedevaluationeffortsof metacomputingresourcemanagementsystemscontinues.Weare

using a C++SIM basedsimulator to model different componentsof the model and then hierarchically

Local
resource
schedule

Local
resource
schedule

Local
resource
schedule

Network

Model for
an HPC
system

Model for
a database

server

Model for
an HPC
system

Local
resource
schedule

Local
resource
schedule

Model
of an

instrument

Model
of an

instrument

Resource
manager

Clients

Distributed computing and database resources

Distributed data sources

Resource manager’s actions in response to inputs

Inputs to
resource
manager

Data traffic from instruments to clients and interactions with resource manager

Feedback of computation results to client and interactions with resource manager

Data
acquisition
requests

Job
submission

Figure 16. A queuing network model for a metacomputing system with resource management.

(users or
interactive
systems)

and resource
manager
interactions
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integrate them for QoS basedperformancestudy under different operating conditions [3]. We are

conductinga workloadstudyof the local resourceschedulingcomponents,calledPortable Batch System

(PBS [13]) in terms of job waiting time as function of numberof nodesrequirement,execution time

requirement,and time of the day. We shall use thesesystemload characteristicsto improve resource

schedulingpolicies.We alsointendto modela broadspectrumof resourcemanagementpoliciesfound in

existing tools and testbedsincluding, Condor[22], CODINE [10], GUSTO [6], Legion [11], and Load

Leveler [16] in additionto thePBS.Detailedquantitative evaluationof QoSmetricsbasedon themodels

for theseresourcemanagementssystemsis usefulfor the softwareenvironmentdevelopersfor the future

metacomputing systems.

6 Conclusions

In thispaper, wepresentedanoutlineof ourCFDsolverworkloadcharacterizationeffort andthescenarios

whereit is beingapplied.We alsopresenteddetailedworkloadcharacterizationsfrom 6 NPBson 3 HPC

systemsof interest.We outlined the useof this characterizationto evaluatevarious“what-if” scenarios

regarding the designof a metacomputingsystem.Basedon measurementsfrom an example,we also

illustrate the use of workload characterization to identify performance bottlenecks in a program.

Workload studies indicate that the temporal characteristicsare similar across different platforms.

Differencesin architectureandoperatingsystemswerealsoelaboratedby themeasurements-basedstudies.

Origin2000requiesa high cacheutilization for deliveringcloseto thepeakperformance,which is not the

casefor an SP-2.Communicationoverheadis significantly higher for message-passingon a Linux PC

comparedto Origin2000andSP-2.This workloadstudy quantitatively determinedthesedifferencesfor

NPBs.

Useof workloadcharacterizationto designandevaluateHPCsystemshasbeenlimited dueto thedifficulty

in collectingruntimeinformationwith minimumintrusionto theprograms.However, with theavailability

of on-chip measurementsupport on state-of-the-artprocessors,it is possible to collect system-level

informationwith minimumoverhead[1]. Our workloadcharacterizationeffort is anexamplewherethese
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measurements enabled various performance studies.
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